Expanded Polystyrene Pipe Insulation (SL Grade)

R-	Value →	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2
← Copper Pipe OD (mm) →	12.7	25	25	25	25	25	25	25	38	38	38	38	38	38	38	38	38	50
	19.1	25	25	25	25	25	25	38	38	38	38	38	38	38	38	50	50	50
	25.4	25	25	25	25	25	38	38	38	38	38	38	38	50	50	50	50	50
	31.8	25	25	25	25	38	38	38	38	38	38	38	50	50	50	50	50	50
	38.1	25	25	25	25	38	38	38	38	38	38	50	50	50	50	50	50	50
	50.8	25	25	25	38	38	38	38	38	38	50	50	50	50	50	50	63	63
	63.5	25	25	25	38	38	38	38	38	50	50	50	50	50	50	63	63	63
	76.2	25	25	25	38	38	38	38	38	50	50	50	50	50	63	63	63	63
	101.6	25	25	38	38	38	38	38	50	50	50	50	50	63	63	63	63	63
	127.0	25	25	38	38	38	38	38	50	50	50	50	63	63	63	63	63	63
	152.4	25	25	38	38	38	38	50	50	50	50	50	63	63	63	63	63	75
	203.2	25	25	38	38	38	38	50	50	50	50	63	63	63	63	63	75	75
	219.1	25	25	38	38	38	38	50	50	50	50	63	63	63	63	75	75	75
	254	25	38	38	38	38	50	50	50	50	63	63	63	63	63	75	75	75
	304.8	25	38	38	38	38	50	50	50	50	63	63	63	63	75	75	75	75
	355	25	38	38	38	38	50	50	50	50	63	63	63	63	75	75	75	75
	406	25	38	38	38	38	50	50	50	50	63	63	63	63	75	75	75	75
	457	25	38	38	38	38	50	50	50	63	63	63	63	63	75	75	75	100
	508	25	38	38	38	38	50	50	50	63	63	63	63	75	75	75	75	100

Values based on k-value 0.0394 W/mK in accordance with AS/NZS 4859.1